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In order to evaluate the effect of a policy or treatment with pre- and

post-treatment outcomes, we propose an approach based on a transition model,

which may be applied with multivariate outcomes and accounts for unobserved

heterogeneity. This model is based on potential versions of discrete latent

variables representing the individual characteristic of interest and may be cast

in the hidden (latent) Markov literature for panel data. Therefore, it can be

estimated by maximum likelihood in a relatively simple way. The approach

extends the difference-in-difference method as it is possible to deal with mul-

tivariate outcomes. Moreover, causal effects may be expressed with respect to

transition probabilities. The proposal is validated through a simulation study,

and it is applied to evaluate educational programs administered to pupils in the

sixth and seventh grades during their middle school period. These programs are

carried out in an Italian region to improve non-cognitive skills (CSs). We study

if they impact also on students’ CSs in Italian and Mathematics in the eighth grade,

exploiting the pretreatment test scores available in the fifth grade. The main con-

clusion is that the educational programs aimed to develop noncognitive abilities

help the best students to maintain their higher cognitive abilities over time.

Keywords: causal inference; cognitive skills; hidden Markov models; human capital;

noncognitive skills

1. Introduction

In many applications, especially in education, the main focus is on the causal

effect of a treatment or policy on a certain individual characteristic of interest,

such as the ability in certain subjects. Even in the absence of experimental data,
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a context in which this evaluation may be performed getting rid of different types

of confounding factors is when pre- and post-treatment outcomes are available.

In this framework, it is natural to apply the difference-in-difference (DiD) method,

which is also very popular in other fields such as economics (for a review, see

Imbens & Wooldridge, 2009; Lechner, 2011; Lee, 2016).

Taking inspiration from the standard DiD method, we propose a novel causal

inference approach based on potential versions of discrete latent variables that

represent the individual characteristic of interest. It is based on a model that we

name causal latent transition (CLT) and that, in reduced form, is equivalent to a

latent Markov (LM) model for panel data with initial and transition probabilities

depending on individual covariates (Bartolucci et al., 2014).

The main features that characterize the CLT model are as follows:

(1) multivariate outcomes: The model can be used in a multivariate setting, where

the same individual characteristic, represented by the latent variables, is mea-

sured by more response variables that may also have a different nature.

(2) unobserved heterogeneity: The individuals are clustered in a finite number of

homogenous subpopulations identified by the states of the latent variables that,

by definition, are not directly observable. Specific causal effects are defined and

estimated for each of these subpopulations.

To better understand the CLT model, it is useful to recall the principal char-

acteristics of the LM models for panel data (Bartolucci et al., 2013). These

models have a structure closely related to that of hidden Markov models for time

series (MacDonald & Zucchini, 2016), as a sequence of discrete latent variables

is assumed to exist for every individual. Each sequence follows a Markov chain

of first order with a number of states that is left unspecified, thus providing more

flexibility with respect to the corresponding models formulated on the basis of

continuous latent processes (Bartolucci et al., 2022). In the application motivat-

ing this article, these latent variables represent the individual characteristic or

personal trait of interest, which is a certain type of cognitive ability. For every

time occasion and conditionally on the corresponding latent variable, each

response variable measuring an individual characteristic is conditionally inde-

pendent of the response variables at different time occasions. As such, the CLT

model may also be adopted with more than two occasions of observation,

although in the application we use to illustrate the proposal only pre- and post-

treatment outcomes are available.

Unlike the standard LM formulation, we adopt potential latent variables for

the proposed CLT model to enhance causal interpretations. In particular, causal

effects are expressed in terms of logits for the transition probabilities between

states of these latent variables. However, it is also possible to express these

effects in terms of differences between probabilities or directly as effects on the

response variables in a flexible way. The idea of using potential versions of the

latent variables in formulating an LM model has already been exploited in
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the model proposed by Bartolucci et al. (2016) that, in turn, extends the causal

latent class model proposed by Lanza et al. (2013). In these approaches, model

estimation is based on propensity score weights (Rosenbaum, 2020; Rosenbaum

& Rubin, 1983). In contrast, in the current proposal, the estimation of the causal

effects is performed by directly including the covariates in the latent process, so

that certain types of unobserved confounding may be eliminated, as in the DiD

approach. Moreover, the CLT model allows analyzing sequential stage develop-

ments from the estimated transition probabilities.

The model parameters are estimated by a rather standard expectation–max-

imization (EM) algorithm that makes use of suitable recursions (Baum et al.,

1970; Dempster et al., 1977; Welch, 2003) so that the overall approach is rela-

tively easy to apply even when extended to more than two time occasions. In

particular, available statistical packages, such as LMest (Bartolucci et al., 2017)

in the open source software R (R Core Team, 2022), may be directly used with

minor adjustments; the code developed the simulations and the application is

available at the GitHub repository: https://github.com/penful/CausalLT.

The proposed approach is validated by a simulation study and illustrated by an

application aimed to analyze the effect of a certain treatment on the human

capital (HC) development, which comprises skills and expertises acquired

through the investment in education and whose returns are identified by higher

individual expected earnings (Becker, 1994). The HC has traditionally been

defined in terms of cognitive skills (CSs), namely, innate and acquired abilities

and competencies usually associated with learning and problem solving tasks,

such as reasoning, remembering, speaking, and understanding (see, among oth-

ers, Heckman et al., 2014; Organization for Economic Cooperation and Devel-

opment [OECD], 2015). However, researchers and practitioners in education

have recently become more and more interested in measuring and studying

non-CSs (NCSs) that, differently from the CSs, are defined as personality

resources linked to motivation in learning, relational capabilities, emotional

stability, and autonomy in pursuing personal objectives. NCSs potentially affect

goal-directed efforts, healthy social relations, adequate judgment, and decision-

making; these skills can be improved by means of suitable educational programs

(Heckman et al., 2014; Heckman & Kautz, 2012). A vast literature demonstrates

that educational programs can increase the NCSs and that an increase in the

NCSs produces a consistent improvement in the CSs. Therefore, in our applica-

tion, we consider this hypothesis rising from the HC literature, and we address

the following scientific question: “Do NCSs programs causally determine an

improvement of the CSs?” To address this question, we rely on data coming

from a study based on a sample of primary and middle class students of the

Autonomous Province of Trento (named PAT) in Italy over 3 consecutive school

years (from 2015 to 2018), in which students’ cognitive abilities are measured at

two occasions. During this period, the PAT implemented a plan based on edu-

cational activities tailored to reinforcing the NCSs of students. Data are referred
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to the schools that voluntarily agreed to this program, so that we dispose of a

sample involving treated and untreated PAT students. The effects of these pro-

grams are evaluated by considering Italian and Mathematics test scores derived

from administrative surveys managed by the Italian National Institute for the

Evaluation of the Educational System (INVALSI). Merging these data with those

deriving from administrative surveys carried out by the PAT, we dispose of many

covariates that can be suitably exploited.

The remainder of this article is structured as follows. In Section 2, after a brief

review of the LM model with covariates, we introduce the proposed CLT model,

whose main features are discussed in Section 3. In Section 4, we show the results

of the simulation study, some details of which are reported in the Supplementary

Information (SI) file. In Section 5, we introduce the application illustrating the

NCSs and educational programs, and we describe the data. In Section 6, we

report the empirical results of the CLT model and those obtained with the DiD

method for the data at issue. Additional details and results related to the appli-

cation are shown in the SI file. Finally, Section 7 provides main conclusions.

2. Causal Latent Transition Model

In the following, after a brief review of the LM model with covariates in the

structural component model, we describe the proposed CLT model, illustrating

first its assumptions, its possible extensions, and finally the estimation method of

the model parameters.

2.1. Preliminaries

In the context of a panel study and with reference to individual i, i ¼ 1; . . . ; n,

and occasion t, t ¼ 0; . . . ; T � 1, we observe a vector of r response variables

Yit ¼ ðYi1t; . . . ; YirtÞ
0

that may be of different types. In the applicative context

that will be illustrated in Section 5, these variables are continuous, but they may

be categorical or discrete with an arbitrary number of levels. For every individual

i, we also consider a vector of time-varying covariates Xit.

In order to model panel data having the structure described above, the LM

approach (Bartolucci et al., 2013, 2014) relies on individual sequences of discrete

latent variables that are collected in the vectors Hi ¼ ðHi0; . . . ;Hi;T�1Þ0,
i ¼ 1; . . . ; n. Every latent variable Hit may assume a value from 1 to k; this

amounts to define k latent states, or equivalently latent clusters or classes, with

individuals in the same state having the same behavior. The latent variables

affect the distribution of the corresponding vector of response variables, so that

each Yit is conditionally independent of the other response vectors Yis, s 6¼ t,

given Hit. The conditional distribution of Yit given Hit may be of any type as in a

finite mixture model (McLachlan & Peel, 2000). Analogously to our proposal,

mixture models assume that the sample is generated by different subpopulations
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or clusters, thus extending the model-based clustering methods also known as

unsupervised learning (Früuhwirth-Schnatter et al., 2019). When the response

variables are continuous, it is natural to rely on the multivariate Gaussian distri-

bution with mean depending on the latent state and common variance-covariate

matrix (Bouveyron et al., 2002), that is,

YitjHit ¼ h*Nrð�h; ΣÞ; h ¼ 1; . . . ; k; i ¼ 1; . . . ; n; t ¼ 0; . . . ; T � 1; ð1Þ

where latent state h is a realization of Hit. In certain formulations with categorical

response variables, it is also assumed that the random variables in each vector Yit

are conditionally independent given Hit.

Every sequence Hi follows a first-order Markov chain with initial and transi-

tion probabilities depending on the covariates. In particular, we adopt the fol-

lowing multinomial logit parametrization for the initial probabilities:

log
pðHi0 ¼ hj Xit ¼ xÞ
pðHi0 ¼ 1j Xit ¼ xÞ ¼ x0�h; h ¼ 2; . . . ; k: ð2Þ

For the transition between states, the following multinomial logit parametri-

zation is assumed for t ¼ 1; . . . ; T � 1:

log
pðHit ¼ hjHi;t�1 ¼ �h; Xit ¼ xÞ
pðHit ¼ �hjHi;t�1 ¼ �h; Xit ¼ xÞ

¼ x0� �hh;
�h; h ¼ 1; . . . ; k; h 6¼ �h: ð3Þ

The estimation of these LM models typically relies on the maximum like-

lihood method. Some details about this aspect are provided in the following, after

having introduced the assumptions of the proposed CLT model.

Concluding this preliminary section, it is worth recalling that the use of dis-

crete latent variables that characterizes LM models has certain advantages with

respect to using continuous latent variables. Among these advantages, we can

mention flexibility, because with the proper number of latent states, it is possible

to approximate any continuous distribution adequately. Moreover, this approach

is particularly useful when the interest is in clustering units in homogenous

groups; within the LM approach, this clustering is dynamic, in the sense that the

same unit can be assigned to different groups across time. For a deeper discussion

on these points, see Bartolucci et al. (2022).

2.2. Model Assumptions

In the following, we formulate the CLT model with explicit reference to two

time occasions (T ¼ 1), corresponding to the specific context of application of

interest. Moreover, as in the standard DiD method, we make use of baseline

covariates that are time-constant and are collected in the vectors Xi. We assume

that the individual-specific response variables depend on a vector Hi ¼
ðHi0;Hi1Þ

0
of two latent variables having a discrete distribution with support
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f1; . . . ; kg. Moreover, we assume conditional independence between the

response variables given the latent process at different time occasions.

As mentioned above, we define a specific conditional distribution of the

responses for each latent state. In our application, in particular, we rely on

assumption (1), where the conditional means �h, h ¼ 1; . . . ; k, and the var-

iance–covariance matrix Σ are parameters whose estimates permit to interpret

the latent states, as will be clear in Section 6. Obviously, the Gaussian distribu-

tion is a natural choice, given that the test scores considered in the application are

measured on a continuous scale. However, the present approach may be extended

to deal with response variables having a different nature, even categorical, and

then, other distributions may be easily included; see Bartolucci et al. (2013).

We conceive the CLT model defining potential versions of the latent variables

Hit. In particular, underlying every Hit, we assume the existence of the potential

latent variable H
ðgÞ
it corresponding to the latent state of individual i at occasion t if

he/she had taken the treatment (g ¼ 1) or not (g ¼ 0). On the basis of these latent

variables, we formulate the average treatment effect on the treated (ATET)

measured on the logit scale. More importantly, this causal effect is specific of

the two potential latent states at the two time occasions, that is,

ATET1 �hhðxÞ ¼ log
p H

ð1Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð1Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

�log
p H

ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð0Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� � ;
ð4Þ

where �h is referred to the latent state at the first occasion and h at the second.

Note that the above definition is conditional on a given value of the baseline

covariates, denoted by x, and it is referred to specific subpopulations. However,

as will be clear in the following, when we formulate a suitable regression model

for the latent POs, we assume that the causal effect is constant with respect to x.

We require the following assumptions to identify the above causal effects:

1. Stable unit treatment value assumption (SUTVA), according to which:

Hit ¼ giH
ð1Þ
it þ ð1� giÞH ð0Þit ; t ¼ 0; 1:

Therefore, the outcome experienced by individual i is not affected by the

assignment and received treatment by other individuals or, in other terms,

there are no relevant interactions between members of the population.
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2. Exogeneity (EXOGEN), according to which the covariates in Xi are time invariant

and measured at the initial period before the treatment assignment or time variant,

but they are not influenced by the treatment.

3. No effect for the pretreatment population (NEPT), which is motivated by the fact

that the treatment is administrated between the two occasions and, therefore, it has

no effect at t ¼ 0. Consequently, it results that

p H
ð1Þ
i0 ¼ H

ð0Þ
i0 j Xi ¼ x;Gi ¼ g

� �
¼ 1; g ¼ 0; 1; 8 x 2 X :

4. Common support (COSU), according to which every individual has a positive

probability of receiving any type of the treatment; it is also named positivity

assumption.

5. Common trend (CT), according to which, in terms of transition probabilities, we

have

log
p H

ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð0Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� � ¼ log
p H

ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 0

� �

p H
ð0Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 0

� � ;

for �h; h ¼ 1; . . . ; k; h 6¼ �h; 8 x 2 X .

According to Lechner (2011, p. 179) and with reference to the DiD, the CT

assumption states that: “the differences in the expected potential non-treatment

outcomes over time (conditional on X) are unrelated to belonging to the treated or

control group in the post-treatment period. This is the key assumption of the DiD

approach. It implies that if the treated had not been subjected to the treatment,

both subpopulations defined by D ¼ 1 and D ¼ 0 would have experienced the

same time trends conditional on X.”

Note, in particular, that with reference to the CLT model, this assumption is

directly formulated on the transition probabilities from H
ð0Þ
i0 ¼ �h to H

ð0Þ
i1 ¼ h,

given the covariates, which may be interpreted on the same footing as differences

between conditional expected values used to define CT in the standard DiD

framework. Similarly to the differences between conditional expected values,

the transition probabilities do not depend on the treatment group, so that non-

treated units represent a proper counterfactual. On the other hand, we allow the

potential outcome for the initial occasion to depend on the group although, on the

basis of NEPT, there is no difference between the two potential latent variables

H
ð0Þ
i0 and H

ð1Þ
i0 because the treatment has not been administered yet. In this way,

the proposed method also allows for a form of nonobservable confounding as we

do not require the potential outcomes to be conditionally independent of the

treatment given the covariates as in other causal frameworks.

Apart from CT, an important condition of our approach is EXOGEN accord-

ing to which the observed covariates, not related to the treatment, do not differ-

ently influence the treated and nontreated groups. Similar arguments hold for

nonlinear models, where “the conditional expectation of the observable outcome
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variable is related to the conditional expectation of a latent outcome

variable,” by means of “a strictly monotonously increasing and invertible

function” (Lechner, 2011, pp. 200–203). As already mentioned, this is the

case of the CLT model, where the link between the conditional expectations

of observable outcomes and unobserved covariates is based in the logit

function, which is one-to-one.

Now, we can prove that the average effect of the treated group is identified.

The NEPT assumption implies that Equation 4 can be rewritten as

ATET1 �hhðxÞ ¼ log
p H

ð1Þ
i1 ¼ hjH ð1Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð1Þ
i1 ¼ �hjH ð1Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

� log
p H

ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð0Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� � :

Due to SUTVA, the first term of the previous equation is directly equal to

log
pðHi1 ¼ hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 1Þ
pðHi1 ¼ �hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 1Þ

;

whereas CT and SUTVA imply that the second term is equal to

log
pðHi1 ¼ hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 0Þ
pðHi1 ¼ �hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 0Þ

:

In the end, it results that

ATET1 �hhðxÞ ¼ log
pðHi1 ¼ hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 1Þ
pðHi1 ¼ �hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 1Þ

� log
pðHi1 ¼ hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 0Þ
pðHi1 ¼ �hjHi0 ¼ �h; Xi ¼ x;Gi ¼ 0Þ

:

To apply the approach in practice, it is convenient to formulate a multinomial

logit model of the following type for the initial probabilities for g ¼ 0;1:

log
p H

ð0Þ
i0 ¼ hj Xi ¼ x;Gi ¼ g

� �

p H
ð0Þ
i0 ¼ 1j Xi ¼ x;Gi ¼ g

� � ¼ log
p H

ð1Þ
i0 ¼ hj Xi ¼ x;Gi ¼ g

� �

p H
ð1Þ
i0 ¼ 1j Xi ¼ x;Gi ¼ g

� �

¼ bðgÞ0h þ x0�1h; h ¼ 2; . . . ; k;
ð5Þ

where bðgÞ0h allows us to account for the difference between treated and nontreated

groups in the initial period; this assumption is in agreement with the NEPT. For

the transition between states at the second time occasion, the following logistic

model is assumed in agreement with CT for g ¼ 0;1:
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log
p H

ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ g

� �

p H
ð0Þ
i1 ¼ �hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ g

� � ¼ gð0Þ
0 �hh
þ x0�1 �hh;

�h; h ¼ 1; . . . ; k; h 6¼ �h:

ð6Þ

We also assume that

log
p H

ð1Þ
i1 ¼ hjH ð1Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

p H
ð1Þ
i1 ¼ �hjH ð1Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� � ¼ gð1Þ
0 �hh
þ x0�1 �hh;

�h; h ¼ 1; . . . ; k; h 6¼ �h;

ð7Þ

whereas the same logit referred to the probabilities pðH ð1Þi1 ¼ hjH ð1Þi0 ¼ �h;
Xi ¼ x;Gi ¼ 0Þ is left unspecified. Note that the covariates affecting the

transition probabilities could also include the lagged response variables as

in our application, illustrated in Section 6.

Parameters gð0Þ
0 �hh

and gð1Þ
0 �hh

may be interpreted in terms of causal effect of the

treatment. In particular, for h 6¼ �h, we directly have that

ATET1 �hhðxÞ ¼ d�hh ¼ gð1Þ
0 �hh
� gð0Þ

0 �hh
: ð8Þ

As already mentioned, this effect is constant with respect to x.

We can easily express the causal effects on another scale. For instance, by taking

the exponential of the expression in Equation 8, we can express these effects as

odds that are of more straightforward interpretation in certain fields. In addition,

we can directly express these effects as differences between probabilities, as

clarified in the following.

Finally, we make it clear that the parametrization on the initial and transition

probabilities assumed in Equations 5 through 7 could be seen as restrictive. In

particular, we could consider the case, in which the regression coefficients for the

covariates are group specific, not only the intercept. With reference to the transi-

tion probabilities, this amounts to include two separate vectors of coefficients,

denoted by �
ð0Þ
1 �hh

and �
ð1Þ
1 �hh

for the nontreated and treated units, respectively. This

implies a more complex way to define the ATET1 �hhðxÞ and the overall causal

effect with respect to that in (8). For this reason, we prefer to rely on the

assumption that �
ð0Þ
1 �hh
¼ �

ð1Þ
1 �hh
¼ �1 �hh, with a similar restriction on the initial

probabilities. These restrictions can be checked in an application, as we will

illustrate in Section 6; we also studied violations of these restrictions within the

simulation experiments described in Section 4. Another possible extension to

conceive is the presence of interactions between the covariates or the effect of

suitable transformation of the covariates. In this case, however, it is sufficient to

include such effects in the vectors Xi while retaining the same assumptions as

above on the initial and transition probabilities.
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2.3. Estimation

The previous assumptions, and in particular parametrizations (5), (6), and (7),

imply the following reduced form for the initial and transition probabilities of the

latent variables Hit:

log
pðHi0 ¼ hj Xi ¼ x;Gi ¼ giÞ
pðHi0 ¼ 1j Xi ¼ x;Gi ¼ giÞ

¼ bð0Þ0h þ gi
�b0h þ x0�1h; h ¼ 2; . . . ; k; ð9Þ

log
pðHi1 ¼ hjHi0 ¼ �h; Xi ¼ x;Gi ¼ giÞ
pðHi1 ¼ �hjHi0 ¼ �h; Xi ¼ x;Gi ¼ giÞ

¼ gð0Þ
0 �hh
þ gi�g0 �hh þ x0�1 �hh;

�h; h ¼ 1; . . . ; k; h 6¼ �h; ð10Þ

where �b0h ¼ bð1Þ0h � bð0Þ0h and �g0 �hh ¼ gð1Þ
0 �hh
� gð0Þ

0 �hh
¼ d�hh correspond to the

ATET1 �hhðxÞ according to Equation 8. These two equations for the first

time occasion and for the transition between the two time occasions cor-

respond to Equations 2 and 3, respectively, in the standard LM model with

covariates.

Estimation is carried out on the basis of the maximum likelihood approach, as

shown in Bartolucci et al. (2014). The likelihood function of the model is max-

imized through the EM algorithm (Baum et al., 1970; Dempster et al., 1977),

where the manifest distribution of the observed responses is computed through

suitable recursions (see Bartolucci et al., 2013, Ch. 5, for details about its imple-

mentation). The algorithm alternates two steps until convergence: At the E-step,

we compute the expected value of the so-called complete data log-likelihood,

given the observed data and the current value of the parameters; at the M-step, we

maximize the expected complete data log-likelihood with respect to the model

parameters, so we update the vector of parameters. These two steps are iterated

until convergence is reached.

Standard errors for the parameter estimates are obtained by exact computation

of the information matrix or through reliable numerical approximations of this

matrix. In our application, and as is rather common, we select the number of

latent states (k) through the Bayesian information criterion (BIC; Schwarz,

1978), which typically leads to a more parsimonious model with respect to other

selection criteria (Bacci et al., 2014). A detailed simulation study proposed in

Bartolucci et al. (2016) shows the validity of this criterion also for the potential

outcome formulation of the LM model.

Finally, note that it is also important to predict the sequence of latent states for

a given unit in the sample over time. In particular, path prediction corresponds to

predicting the latent state for each time occasion given the observed data, and it is

obtained on the basis of the posterior distribution of the latent variables. This

procedure is also named local decoding.
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Suitable procedures to properly initialize the EM algorithm and perform

model selection, and other computational tools required for the estimation and

prediction, are available in the R package LMest (Bartolucci et al., 2017).

3. Further Details on the Proposed Approach

In this section, we provide some comments about the proposed CLT approach,

and we introduce some possible extensions.

3.1. Relevant Features of the Proposal

The CLT model addresses the following main issues:

(a) Number and types of outcomes: (1) The CLT model is formulated in a multi-

variate form, and it allows us to estimate different causal effects of the treatment

by looking at the joint variability of the responses over time. (2) The CLT model

is a nonlinear model that overcomes the problems related to the scale dependence

and the limited support of the variables. The probability distribution of the poten-

tial latent variables given the treatment and the pretreatment covariates is invar-

iant with respect to transformations of these variables. The observed responses

are related to the latent variables by means of the distribution in Equation 1.

Moreover, the CLT respects the identifiability conditions requested for a casual

model by Puhani (2012).

(b) Instead of comparing multiple static models, the CLT approach allows studying

the initial conditions through the estimates of the initial probabilities, and then, it

analyzes sequential stage developments through the estimated transition

probabilities.

(c) Unobserved heterogeneity: In many cases, especially with big data, huge popula-

tions are composed of specific subpopulations that differ for unobserved charac-

teristics. In such a situation, treatment may have a different effect on each

subpopulation, and the DiD method cannot jointly measure all these effects.

On the other hand, the CLT model allows us to detect unobserved heterogeneity

differently with respect to the proposal of Keane and Wolpin (1997), and it also

allows us to account for the potential endogeneity of latent abilities (Hansen et al.,

2003) as well as to discover latent clusters on the basis of the observed outcomes.

The number of these latent groups is not a priori fixed, but it is suitably deter-

mined; see also the discussion in Section 7. The ATET1 �hhðxÞ in (4) is measured

for each pair of subgroups ð�h; hÞ, with �h; h ¼ 1; . . . ; k, and in this way, it is

possible to verify if the treatment has different impacts.

(d) In the CLT model, the outcomes are only dependent on the latent POs, which are

influenced by the observed pre- and post-treatment covariates. These latent vari-

ables are defined differently from the factorial model (Cunha et al., 2010) as they

are assumed to follow a Markov process (Bartolucci et al., 2014). In cases of

incomplete information, the proposal overcomes the identification problems

highlighted by Jöreskog (1966) because “identification requires that the investi-

gator specifies some features of the model” as well as the indeterminacy of scores

(Vittadini, 1989).
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3.2. Possible Extensions

In formulating the CLT model, we adopt a convenient logit parametrization to

express the ATETs. We can also write these effects directly in terms of differ-

ences between probabilities as an alternative of (4). In particular, consider the

effects

ATET�
1 �hh
ðxÞ ¼ p H

ð1Þ
i1 ¼ hjH ð1Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �

� p H
ð0Þ
i1 ¼ hjH ð0Þi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �
; ð11Þ

where, again, �h is referred to the latent state at the first time occasion and h is that

at the second occasion. Given assumptions (6) and (7), it is possible to express

this effect as

ATET�
1 �hh
ðxÞ ¼

exp gð1Þ
0 �hh
þ x0�1 �hh

� �

1þ
X
h0 6¼h

exp gð1Þ
0 �hh0
þ x0�1 �hh0

� �� exp gð0Þ
0 �hh
þ x0�1 �hh

� �

1þ
X
h0 6¼h

exp gð0Þ
0 �hh0
þ x0�1 �hh0

� � ;

for given x and h 6¼ �h, where the denominators are multinomial logit normalizing

constants. The previous expression may be exploited to express an estimate of the

ATET on the probability scale once the model parameters have been estimated.

It may also be of interest to express the causal effect of the treatment directly

on the observable outcomes. In this case, for outcome of type j, j ¼ 1; . . . ; r, we

have the effect expressed as

ATET
y
j ðxÞ ¼

Xk

h¼1

EðYij1jHi1 ¼ hÞp H
ð1Þ
i1 ¼ hj Xi ¼ x;Gi ¼ 1

� �

�
Xk

h¼1

EðYij1jHi1 ¼ hÞp H
ð0Þ
i1 ¼ hj Xi ¼ x;Gi ¼ 1

� �
; ð12Þ

where Yij1 is an element of Yi1 and

p H
ðgÞ
i1 ¼ hj Xi ¼ x;Gi ¼ 1

� �
¼
Xk

�h¼1

p H
ðgÞ
i0 ¼ �hj Xi ¼ x;Gi ¼ 1

� �

� p H
ðgÞ
i1 ¼ hjH ðgÞi0 ¼ �h; Xi ¼ x;Gi ¼ 1

� �
; g ¼ 0; 1;

is the probability at the second time occasion that the potential latent outcome for

treatment g is equal to h. Even in this case, the causal effects may be estimated on

the basis of the parameter estimates by exploiting the previous formulae.

Finally, as already mentioned, the approach may be easily extended to deal

with settings in which more than two occasions of observation are available.

In this case, the model will be based on an initial probability formulation of type

(5) and a sequence of T � 1 transition probabilities of types (6) and (7). More-

over, the treatment effects may be formulated for t ¼ 1; . . . ; T � 1 with
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expressions of types (4), (11), and (12), which are denoted by ATETt �hhðxÞ,
ATET�

t �hh
ðxÞ, and ATET

y
jtðxÞ, respectively.

4. Simulation Study

In order to validate the proposed approach, we performed a simulation study

related to the application presented in Section 5. This study is based on a bench-

mark design described in Section 4.1, whose results are commented in Section

4.2, and on alternatives to this design based on using a larger set of covariates and

misspecified models presented in Section 4.3.

4.1. Benchmark Design

For a sample of size n, with n ¼ 1;000 and 2;000, we considered individual

vectors of three exogenous covariates Xi ¼ ðX i1;Xi2;Xi3Þ0, the first two of which

are continuous and the third is dichotomous, and individual vectors of r ¼ 2

response variables Yi0 ¼ ðYi01; Yi02Þ0 and Yi1 ¼ ðYi11; Yi12Þ0 for the two time

occasions, with i ¼ 1; . . . ; n. The covariates are generated by letting Xi1 ¼ X �i1,

Xi2 ¼ X �i2, and Xi3 ¼ 2 � IðX �i3 � 0Þ � 1, where Ið�Þ is the indicator function

equal to 1 if its argument is true and 0 otherwise, with X �i1, X �i2, and X �i3 having

the following trivariate Gaussian distribution:

X �i1
X �i2
X �i3

0
B@

1
CA*N3

0

0

0

0
B@

1
CA;

1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

0
B@

1
CA

2
64

3
75:

Data are generated from a model with k ¼ 2; 3 latent states. Under this model,

the response variables have a bivariate Gaussian distribution with mean depend-

ing on the latent state, denoted by �h ¼ ðmh1; mh2Þ0 for latent state h, with values

increasing with h. The conditional variance–covariate matrix Σ is common to all

latent states and assumes values corresponding to different levels of correlation

r. Values of these parameters are reported in Table 1 of the SI file.

The initial states referred to H
ðgÞ
i0 , for g ¼ 0; 1, are drawn from the logistic

model in Equation 5, whereas, for the transition to the state at the second time

occasion, the logistic models in (6) and (7) are assumed, depending on para-

meters having specific values. Note that these values are chosen so that treated

individuals tend to belong to the second (or third) latent state with higher prob-

ability at the beginning and that the treatment has a positive effect in terms of

transition probabilities. Values of the parameters involved in these model com-

ponents are again reported in Table 1 of the SI file.

Finally, the assignment of the treatment is based on the logistic model

log
pðGi ¼ 1j Xi ¼ xÞ
pðGi ¼ 0j Xi ¼ xÞ ¼ a0 þ x0�1;
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with two possible values for the intercept, a0 ¼ �1; 0, corresponding to two

different proportions of treated and nontreated individuals, and two possible

values for �1, equal to 0 or 0:5 � 1, corresponding to the situation of exo-

genous or endogenous treatment, where 0 is a vector of zeros and 1 is a

vector of ones of suitable dimension.

Overall, we considered 32 different scenarios, corresponding to the combina-

tion of two different values of n, r, k, a0, and �1. Under each scenario, we drew

1,000 samples from the assumed model, and for every sample, we estimated the

parameters of the proposed CLT model with covariates, also obtaining the stan-

dard errors by using the asymptotic method. Estimates for two versions of the

model are compared: In the first, the only covariate is the indicator variable for

the treatment, which is a misspecified model given the data generation process.

In the second, the covariates are also included further to this indicator variable;

see the SI file for additional details.

4.2. Results Under the Benchmark Design

In order to summarize the simulation results, we consider the average bias

(Av.Bias) and the average root mean square error (Av.RMSE), which are com-

puted as

Av:Bias ¼ 1

kr

Xk

h¼1

Xr

j¼1

1

S

XS

s¼1

ðm̂ ½s�hj � m½0�hj Þ
�����

�����;

and

Av:RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kr

Xk

h¼1

Xr

j¼1

1

S

XS

s¼1

m̂½s�hj � m½0�hj

� �2

vuut ;

where m̂½s�hj denotes the estimate of mhj obtained for the s-simulated sample and m½0�hj

denotes its true value. Results in terms of these two indicators are reported in

Table 2 of the SI file.

We conclude that the means of the latent states are properly estimated by both

CLT models with and without covariates, apart from the indicator variable for

the treatment. The bias and RMSE also behave as expected with respect to the

sample size and the model complexity, with a typical decrease of both as the

sample size (n) and the number of latent states (k) increase. In this regard, it is not

possible to spot significant differences between the two methods.

Then, we consider the estimation of the effects of main interest, which are the

causal parameters d�hh defined in Equation 8. When k ¼ 2 with a binary treat-

ment, the causal effects are two, whereas when k ¼ 3, they are six. In this case,

the simulation results are evaluated in terms of bias and RMSE for every para-

meter. These results are reported in Tables 3 and 4 of the SI file.
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We observe that the difference between the two methods is remarkable, with a

clear advantage of the proposed approach that includes covariates in the esti-

mated model. This is particularly evident in terms of bias, which is low for the

proposed model and severe when the model is estimated without covariates, even

if the treatment is exogenous given the covariates. The behavior of bias and

RMSE with respect to n and k is as expected and coherent with the comments

provided about Table 2 of the SI file.

Finally, we considered the precision of the method to obtain the standard

errors for the parameter estimates in terms of relative bias (R.Bias), which is

computed as

R:Bias ¼

1

S

XS

s¼1

ŝeðd̂hjÞ½s� � seðd̂hjÞ½0�
� �

seðd̂hjÞ½0�
� 1;

where ŝeðd̂hjÞ½s� is the standard error for d̂hj obtained on the basis of the sth

simulated sample and seðd̂hjÞ½0� is its true value obtained as standard deviation

of the d̂
½s�
hj parameter estimates. These results are reported in Table 5 of the SI file.

For the first 100 samples generated under the different scenarios of the bench-

mark design, we also performed the selection of the optimal number of states k on

the basis of the BIC, according to the same procedure that will be used in the

application (see Section 6). We found that the correct number of states, equal to 2

or 3 depending on the specific scenario, has always been selected on the basis of

this procedure.

4.3. Other Simulations Designs

As a first extension of the benchmark design illustrated above, we considered

the case of a larger number of covariates, which is even closer to the context of

the application. In particular, the simulation design includes seven additional

covariates that are generated from independent Gaussian distributions with mean

equal to the mean of the first three variables and variance equal to 1; in symbols,

we have

XijjX �i1 ¼ x�i1;X
�
i2 ¼ x�i2;X

�
i3 ¼ x�i3*N

1

3
ðx�i1 þ x�i2 þ x�i3Þ; 1

� �
; j ¼ 4; . . . ; 10:

The full vector of covariates, which now has dimension 10, is still denoted by

Xi and is used both in the generation of the data and the treatment as described in

Section 4.1. In particular, for all model components, the simulation models rely

on the same values of the intercepts, while the vectors of regression coefficients

are augmented with all elements equal to 0; see also Table 1 of the SI file. The

full vector of these covariates is also used in the model estimated for every

simulated sample. Overall, the added covariates do not have a significant effect
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but, being highly correlated with the significant covariates, their presence may

represent a challenge for the proposed approach.

The results of the additional simulation study described above show that,

while the quality of the estimates of the mhj parameters is not affected by the

higher number of covariates with respect to the benchmark design, the quality of

the estimates of the initial and transition probabilities and, consequently of the

d�hh parameters, worsens. With n ¼ 1;000, in particular, for certain simulated

samples, the estimates of these regression parameters tend to extreme values and

directly affect the Bias and RMSE. With n ¼ 2;000, these extreme estimates are

not observed, and the estimation results are overall rather similar to those

obtained under the benchmark design. The main conclusion of this additional

simulation scenario is that the approach must be carefully applied when there are

many covariates and it is necessary to adopt an accurate selection of the covari-

ates so as to avoid unreliable parameter estimates.

As outlined at the end of Section 2.2, the proposed approach assumes that the

effect of the covariates on the transition probabilities is the same for nontreated

and treated units, that is, �
ð0Þ
1 �hh
¼ �

ð1Þ
1 �hh

. We can then consider the implication of

the violation of this assumption. For this aim, we generated samples from a

model that is similar to that used within the benchmark design with the main

difference that the transition probabilities for nontreated units are computed as in

(6) with a specific vector �
ð0Þ
1 �hh

and, similarly, those of the treated units are

computed as in (7) with a specific vector �
ð1Þ
1 �hh

. The assumed values of these new

parameters within the simulation study are obtained as �
ð0Þ
1 �hh
¼ �1 �hh � 0:25 � 1

and �
ð0Þ
1 �hh
¼ �1 �hh þ 0:25 � 1, with �1 �hh having elements indicated in Table 1 of

the SI file.

The results of this additional simulation scenario are very close to those

obtained under the benchmark design in terms of Bias and RMSE of the estima-

tors of the causal parameters of interest. In particular, the proposed CLT

approach maintains a considerable advantage over the LM model without cov-

ariates in estimating these effects.

5. Application

A large literature demonstrates that there are strong links between NCSs and

CSs both in the educational process and work environment (see, among others,

Cunha & Heckman, 2007, 2008; Cunha et al., 2006; Cunha et al., 2010; Heckman

et al., 2014; Heckman & Kautz, 2012; Heckman et al., 2006; OECD, 2015; West

et al., 2016). Three studies are particularly relevant from the methodological

point of view. Based on a static factor model, the first shows that CSs and NCSs

are equally crucial to success in many life dimensions, such as education, income

level, employment, and adolescent “risky” behaviors (Heckman et al., 2006). The
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second study defines CSs and NCSs as unobservable traits generating observed

outcomes, such as learning test results, level of education, educational achieve-

ment, salary level, and performance in job career (Cunha et al., 2010). The

mutual influence in causal terms of NCSs and CSs is assessed by accounting for

the socioeconomic characteristics of the family through a dynamic factor model.

Edin et al. (2022) show that the economic return to the NCSs is higher than the

return to CSs. Other researchers attempt to verify whether appropriate educa-

tional projects conceived to improve NCSs also improve CSs (see, among others,

Garca-Pérez & Hidalgo-Hidalgo, 2017; Holmlund & Silva, 2014; Kahne &

Bailey,1999; Martins, 2010; Tierney et al., 1995). In general, the current litera-

ture shows that the implemented tutoring and accompaniment activities decrease

the dependence on drugs or alcohol. At the same time, the improvement of self-

concept and school outcomes is minor, especially for those students with more

critical family and social conditions.

Concerning our application, we address the following scientific question

already introduced in Section 1: “Do NCSs programs causally determine an

improvement of the CSs in the Italian educational context?” We use the proposed

CLT model to evaluate whether programs that stimulate NCSs also lead to an

improvement in CSs, and we compare the effects with those estimated with the

DiD method. First of all, we describe the available data, particularly regarding

the outcomes, the kind of NCSs considered, the covariates, and the educational

programs finalized to improve the NCSs.

In particular, the data concern a sample of primary and middle class students

of the PAT observed from the fifth grade through the eighth grade during the

2015–2018 school years. As previously indicated, 25 schools with 1,561 pupils

(out of 77 with a total population of 5,502 students) freely accepted participat-

ing in the PAT survey in 2015. Among these schools, 12 (with 845 students in

111 classes) freely adopted the above mentioned educational programs to

improve the NCSs. The data are derived by integrating five datasets illustrated

at the beginning of Section 2 of the SI file. The PAT is an Italian region whose

students show excellent test results and in which there are no severe socio-

economic problems and attention to the NCSs is already an established prac-

tice. In this way, the analysis of the link between NCSs and CSs is not affected

by disturbing factors.

5.1. Outcomes

The measurement of the CSs that are the outcomes of our analysis is based on

standardized national tests. In fact, we consider the scores students achieved in

the INVALSI tests in the fifth and eighth grades (primary outcomes). The tests

are explicitly built to assess the students’ knowledge of Italian literacy and

Mathematics nationwide and are carried out with different degrees of difficulty

and methods. For example, in the fifth grade (elementary school), they are
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written on paper, and in the eighth grade (middle school), they use an adaptive

computer technology. The observed score is obtained by counting the number of

correct answers in the total: The achievement of 55% to 60% of correct answers

on all tests certifies sufficiency. The percentage of correct answers is reported net

of cheating, to provide data as accurate as possible, a phenomenon detected

through a statistical control referring to those “improper” behaviors held during

the administration of the INVALSI tests (correct answers provided because

copied from other students or books or even suggested more or less explicitly

by teachers). The national average of the test scores on the Rasch scale for each

grade is fixed at 200. Data sources and descriptive statistics on these variables are

reported in Section 2 of the SI file through Tables 6 through 10.

5.2. Description of the Non-Cognitive Skills and Other Covariates

The NCSs considered in our analysis are five main distinct but related person-

ality traits, named the Big Five (Heckman et al., 2014; John & Srivastava, 1999),

which correspond to the following five dimensions: (1) openness to experience,

namely, the propensity to open oneself to reality and new cultural or intellectual

experiences; (2) conscientiousness, namely, the disposition to be responsible,

hardworking, and organized; (3) extraversion, namely, the openness of oneself

toward other people and things at the origin of a general behavior in living class

and school education activities; (4) agreeableness, namely, the orientation toward

cooperation, altruism, and cordiality in social relations that generates personal

and social level of human and friendly relationships between students and among

students and teachers for what concerns the school environment; (5) emotional

stability (or in opposite meaning neuroticism), namely, the containment of the

emotional reactions, without sudden mood changes. Some other NCSs are (6)

school motivation, namely, students’ desire to participate in learning activities to

improve knowledge; (7) external locus of control, that is, the help that students

need to achieve school goals (Gagné & Deci, 2005). Table 6 of the SI file

describes in more detail NCSs considered in the illustrative example. The cov-

ariates are selected according to substantive knowledge of the context and data

and considering the recent literature on the topic, as illustrated in the previous

section.

5.3. Educational Programs

Starting from 2015 up to 2018, the PAT elaborated plans for schools focused

on student learning and the NCSs improvements involving teachers, active

teaching methodologies, information orientation, training, and counseling. Very

solid activities were proposed, at several occasions, from a scientific and orga-

nizational point of view. They were structured and designed according to the

following four macrocategories: (1) training orientation managed by teachers

during school hours, inside the programs of disciplines-subjects of study, or
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inside the curriculum (e.g., alternation of experiences school-work, etc.);

(2) counseling out of school hours generally managed by external experts to the

school; (3) information and orientation including activities addressed to the

whole school such as open days, orientation fairs, meeting with privileged wit-

nesses, and so on; and (4) mixed projects (derived as combinations of the pre-

vious three activities), for example, projects to combat the risk of discomfort and

early school leavers. These activities involved an information part (the school

paths in the second cycle), a part of counseling (discovery and strengthening the

identity of the students), and training activity of the teachers in reducing the risk

of dropping out for the students. The schools themselves freely decided whether

or not to carry out these training projects by communicating their choice to the

PAT. Once a school chooses to participate, all students compulsorily participate

in the same activities with the same time commitment that varies among projects.

From the institutional point of view, the schools were allowed to: (1) implement

their own projects concerning their actual educational offer, including special

activities for students; these were carried out even with some involvement with

local authorities, and frequently they were out of school; and (2) choose improve-

ment projects from a list of projects proposed by the PAT and related to the

students’ learning objectives (INVALSI, academic achievement, skills certifica-

tions, etc.).

5.4. Absence of Self-Selection and Check of Causal Latent Transition Model

Assumptions

In dealing with an observational study, we have to exclude any self-selection

both of the schools participating and nonparticipating to the survey and of the

schools participating and nonparticipating to the educational PAT programs.

First of all, we examined whether the schools that voluntarily participated in the

survey had students who, on average and with reference to the INVALSI 2015

test, had the same level of cognitive ability as students in schools that did not

participate. We consider the average achievement scores in Italian and Mathe-

matics for each school, and we compared participating and non-participating

schools according to such average scores. We recall that there are 25 partici-

pating schools with 1,561 pupils and 52 nonparticipating schools with 3,941

pupils, and we recall that the school freely decides to adhere to the programs.

The results reported in Table 9 of the SI file show no significant differences

between these two school types, so we can conclude for an absent or limited

impact of self-selection.

We consider the average test scores in Italian and Mathematics in the fifth and

eighth grades and average values for the covariates at the baseline (t ¼ 0, fifth

grade) across treated and nontreated students of the participating schools.

According to the t tests reported in Table 10 of the SI file, no significant differ-

ences either in Italian nor in Mathematics can be detected between the average
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scores of treated and nontreated students at the baseline (t ¼ 0). We observe that

at the baseline, students who received the treatment show an average score that is

worse in Mathematics with respect to the score of nontreated students, while they

have a better average score in Mathematics after the treatment. Treated students

show higher values for all covariates: school motivation, quality of class rela-

tions, external support for student autonomy, well-being at school, discomfort at

school, bullying acted, and bullying right away. The parental socioeconomic

status related to the international socioeconomic index named ESCS is equal

in both groups, although the parents’ employment status is slightly higher for

treated students. The proportion of females and students with fathers having an

Italian nationality is similar between treated and nontreated students.

We can state that the model assumptions hold for the present application, as

explained in the following. First of all, SUTVA holds because either all classes

in the same school carried out the educational program to increase NCSs, and

there are no interactions between students in treated and nontreated schools.

Second, regarding EXOG we have to consider that the NCSs and the other

covariates in the model are those collected before the treatment through the

INVALSI 2015 test, such as social capital and socioeconomic and demographic

characteristics of the students; thus, they are not influenced by the treatment.

Third, NEPT holds because the PAT educational programs were implemented

between the fifth and eighth grades without affecting the previous individual

characteristics. In effect, in the present case, the observed covariates are

defined before the beginning of the treatment, and therefore, they are time

invariant. Moreover, the results in Table 10 of SI file show that the average

values of the treated and nontreated outcomes both at times t ¼ 0 an t ¼ 1 are

almost equal. As we show in Section 6, we can verify the effect of the treatment

only on the worst and best subgroups of students but not on the overall groups

of the treated and nontreated students. This a posterior evidence that the CT

property is respected. Fifth, COSU holds since treatments are considered con-

ditional to the covariates in every group of schools, and each student has a

positive probability of receiving the treatment. Therefore, the ATET, that is, the

causal effect of the educational programs aimed to increase NCSs on CSs, may

be identified.

6. Empirical Results

First, we show the results obtained with the proposed multivariate CLT

model, and then, as a comparison, we also show the results obtained with the

DiD approach, as mentioned in Section 1. We account for missing values on the

covariates through dummies as indicators for missing values (Dardanoni et al.,

2011) in both models.
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6.1. Results of the Causal Latent Transition Model

The CLT model is estimated as mentioned in Section 2.3 through the EM

algorithm. Table 1 shows the results of the model selection procedure. The BIC

index leads to selecting a model with two latent states.

According to the estimated conditional means shown in Table 2, which are

increasingly ordered, we identify two subpopulations of students clustered in low

and high levels of performance. Students in the first state or cluster show an

average score of around 195 for both Italian and Mathematics, whereas students

in the second cluster are the best performing since they show an average score of

around 235 for Italian and 246 for Mathematics, with an average gain of around

40 points on both subjects. It is worth mentioning that it is always possible to

interpret the states as different achievement stages in subjects even under a model

with more than two latent states. In fact, states can always be ordered according

to the estimated conditional means, thus providing a proper interpretation as

achievement levels.

At the beginning of the fifth grade, the average probability of belonging to the

first cluster is 0.648. According to the estimated variance–covariance matrix in

Table 3, which is assumed as homogeneous across clusters, there is a weak

positive association (r̂ ¼ 0.381) between Italian literacy and achievement on

Mathematics. Figure 1 shows the contour plot of the estimated conditional dis-

tributions. As we explain above, the average Italian score for both standardized

TABLE 1.

Maximum Log-Likelihood, Number of Parameters, and Bayesian Information Criterion

Index (BIC) for an Increasing Number of Latent States Ranging From 1 to 4

k ‘̂ #par BIC

1 �30,647.51 5 61,331.79

2 �30,084.10 60 60,609.39

3 �29,890.94 147 60,862.78

4 �29,756.70 266 61,469.32

TABLE 2.

Estimated Cluster Conditional Averages

Scores

Latent State (h)

1 2

Italian 192.312 235.133

Mathematics 196.071 246.636
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tests is 200; therefore, students of the PAT region classified in the first cluster

slightly underperform with respect to the national average and those in the

second cluster are very well-performing.

Table 4 shows the effects of the covariates (described in Table 7 of the SI

file) on the initial probabilities as in Equation 9. In the fifth grade, females

tend to belong to the cluster grouping students with top performance levels:

The odds ratio for females versus males is equal to exp(0.462) ¼ 1.587, thus

showing higher CSs than males. Discomfort at school negatively affects cog-

nitive performance, and the estimated log-odds ratio for distressed versus

happy students is equal to 0.249, revealing the importance of this feeling.

The parent’s employment status and their Italian nationality appear to be

TABLE 3.

Estimated Variance–Covariance Matrix Between Italian and Mathematics Achievement

Scores

Scores Italian Mathematics

Italian 840.30 319.53

Mathematics 319.53 841.90

FIGURE 1. Contour plot of the estimated densities for the two latent clusters according to

the scores in Italian and Mathematics.
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important factors contributing to competitive advantages in terms of CSs for

the students.

Regarding the logistic regression model for the transition probabilities, as

in Equation 10, the average transition matrices are shown in Tables 5 and 6,

whose standard errors are obtained through a nonparametric bootstrap based

on 1,000 bootstrap samples. The first one shows a probability of around

0.342 of performing better in advanced studies, that is, of moving from the

first to the second cluster. However, a similar probability (0.401) is estimated

for moving from the second to the first cluster. Looking at Table 6, we

observe that, while the probability to transit to the second cluster is roughly

the same for treated and nontreated students, that from the second to the first

cluster is higher for students who have not taken the educational programs

aimed at improving the NCSs (0.463 vs. 0.348). Therefore, nontreated stu-

dents are more prone to worsening their CSs passing from the fifth to the

eighth grade.

TABLE 4.

Estimates of the Logit Regression Parameters of the Initial Probability to Belong to the

Second Latent State With Respect to the First Latent State of the Causal Latent Transition

Model

Covariate Effect SE

Intercept �3.275** 0.455

School motivations �0.027 0.112

Parents’ ESCS index 0.170 0.133

Quality of class relations �0.180 0.184

External support for student autonomy 0.143 0.177

Well-being at school 0.198 0.199

Discomfort at school �1.389** 0.163

Bullying acted �0.685 0.495

Bullying right away 0.149 0.275

Female 0.462** 0.199

Italian nationality of the father 0.904** 0.308

Employment status of the father 0.186** 0.064

Employment status of the mother 0.232** 0.054

Missing indicator for parents’ ESCS index 0.684** 0.199

Missing indicator for gender 2.771* 1.683

Missing indicator for father’s nationality �0.301 1.101

Missing indicator for father’s employment 1.075** 0.344

Missing indicator for mother’s employment �1.172** 1.291

Note. ESCS ¼ index of economic, social and cultural status.

*Significant at 5%. **Significant at 1%.
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Table 7 displays the estimated ATET and the effect of the covariates, among

which we included the lagged response variables, thus relaxing the conditional

independence assumption and excluding the covariates related to well-being

collected in 2015. The estimated ATET related to the transition from the second

to the first cluster is negative and significant, and the corresponding odds ratio for

treated versus nontreated students is expð�3:583Þ ¼ 0:03, showing that the pro-

posed activities to improve NCSs reduce the probability that the best students

worsen during the school years. In 2015, females mainly belonged to the cluster

of best performing students in both subjects but performed poorly over time

compared to males (the coefficient related to the transition from first to the

second cluster is negative and significant). Father’s employment status is impor-

tant, especially for moving from the first to the second group (the odds ratio is

exp (0.394) = 1.483). The log-odds of the Italian and Mathematics achievement

scores at the fifth grade are positive for the transition from the first to the second

cluster and negative for the transition from the second to the first cluster. Coher-

ently with the value added theory (Bryk & Weisberg, 1976), what has been

acquired in primary school helps to increase the CSs and reduces the possibility

of decreasing cognitive abilities.

TABLE 6.

Average Transition Probabilities of the Causal Latent Transition Model for Treated and

Nontreated Students and, in Parenthesis, Estimated Standard Errors Obtained Through

Nonparametric Bootstrap

Treatment

Latent State (h)

�h 1 2

Treated 1 0.654 (0.040) 0.346 (0.040)

2 0.348 (0.084) 0.652 (0.062)

Nontreated 1 0.662 (0.044) 0.338 (0.044)

2 0.463 (0.073) 0.536 (0.073)

TABLE 5.

Average Transition Probabilities of the Causal Latent Transition Model and, in

Parenthesis, Estimated Standard Errors Obtained Through Nonparametric Bootstrap

Latent State (h)

�h 1 2

1 0.658 (0.028) 0.342 (0.028)

2 0.401 (0.059) 0.599 (0.059)

Causal Latent Transition Model for Human Capital

24



We performed some sensitivity analyses to validate the above results: (1) we

investigated a possible differential treatment effect for Italian and Mathematics

scores by estimating univariate models for each outcome; the results reported in

Table 11 of the SI file confirm those obtained with the multivariate CTL model;

(2) we evaluated the plausibility of the conditional Gaussian distribution of each

outcome once local decoding, mentioned at the end of Section 2.3, has been

applied. In the SI file, we show in Figures 1 and 2 the empirical conditional

cumulative distribution functions for both outcomes in each cluster at each grade;

(3) we checked also the results of the model with three clusters. We observe that

these results are coherent with the previous results: The latent states are ordered

for increasing values of the outcomes and they are in line with the results of the

model with two latent states especially for what concerns the estimated treatment

effects. We notice that, according to the average transition matrices, nontreated

students show a higher transition probability from latent states 2 to 1 and from

latent states 3 to 2 compared to treated students. They also show a lower prob-

ability of remaining in latent states 2 and 3 compared to treated students; and (4)

we estimated several models removing covariates in the initial and/or transition

probabilities as well as considering some interaction effects of the treatment with

other covariates, such as gender, parents’ socioeconomic index, and scores in

Italian and Mathematics at Grade 5. These models showed a higher BIC index

than that of the model reported above.

Finally, we have to stress that our analyses are valid under the CT assumption

discussed in Section 2.2, which in general is a crucial assumption, in the DiD

literature. Although we cannot perform a formal test on this assumption, we are

confident it holds in the light of the data reported in Table 10 of the SI file. In

fact, in this table, we report the average score in Italian and Mathematics sepa-

rately for treated and nontreated students, referred to 2012, when students were

enrolled in the secondary elementary school year. Note that this period is earlier

than the pretreatment year (2015). The comparison between the results for 2012

and 2015 leads to the conclusion that the CT is a realistic assumption.

6.2. Difference-in-Difference Estimates

In the following, we report the results obtained with the standard DiD model

expressed for the first time occasion as

Yi0 ¼ aþ gigþ x0i b þ gi x0i � þ hi0; ð13Þ

where hi0 are the error terms having zero mean and constant variance and

considering as response the difference between the outcomes on the two time

occasions:

Yi1 � Yi0 ¼ dð0Þ þ x0i �ð0Þ þ gidþ �hit : ð14Þ
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This model implies that ATET1 ¼ d, so that it is independent of the covariates

and can be simply estimated by the method of least squares on the basis of the

observed data. Both models are estimated for the test results in Italian and

Mathematics. Regarding the formulation in (13), we included all the available

covariates, whereas in (14), we also added the previous achievement score, and

we excluded covariates collected in 2015 related to the well-being at school.

Apart from the standard DiD formulation described above, we also considered

the doubly robust estimator proposed by Sant’Anna and Zhao (2020) that, from a

certain point of view, may be seen as a generalization of the DiD estimators

proposed by Heckman et al. (1997) and Abadie (2005). In particular, we used the

R package DRDID (Sant’Anna & Zhao, 2020) to estimate the models again for

the Italian and Mathematics scores separately.

In Tables 8 and 9, we show the estimated regression coefficients of the DiD

models according to Equations 13 (top panel) and 14 (bottom panel) without

interactions between covariates. In order to better characterize some differences,

we also provide the results of the models estimated with data of two subgroups of

students: that of students with a test score above and below the median value at

the fifth grade for both subjects.

Regarding the DiD models estimated assuming formulation (14), see the

bottom panel of Table 8, females perform worse in Italian with respect to

TABLE 7.

Estimates of the Logit Regression Parameters of the Transition Probabilities Under the

Causal Latent Transition Model: First Column (Effect 1) From the First to the Second

Cluster, Second Column (Effect 2) From the Second to the First Cluster

Covariates Effect 1 SE Effect 2 SE

Intercept �43.393** 0.507 45.543** 0.802

Treatment 0.847 0.814 �3.583** 1.683

Parents’ ESCS index 0.173 0.561 0.069y 1.116

Female �2.702** 0.873 2.499** 1.565

Italian nationality of the father 0.344 0.833 4.425 2.881

Employment status of the father 0.394y 0.236 �0.026 0.426

Employment status of the mother �0.314 0.239 �0.291 0.312

Missing indicator for ESCS index 0.102 0.938 �4.699** 1.792

Missing indicator for gender �2.520 1.849 �3.134 3.433

Missing indicator for father’s nationality �0.399 2.511 19.818** 1.881

Missing indicator for parent’s employment 1.998* 1.962 �6.046* 2.927

Missing indicator for mother’s employment �4.534* 1.962 �2.245 3.336

Italian score at the fifth grade 0.078** 0.011 �0.076** 0.022

Math score at the fifth grade 0.114** 0.010 �0.141** 0.020

Note. ESCS ¼ index of economic, social and cultural status.
ySignificant at 10%. *Significant at 5%. **Significant at 1%.
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TABLE 8.

Estimates of the Regression Parameters of the Difference-in-Difference Models for Italian

Scores, as in Equation 13 (top panel) and Equation 14 (bottom panel), Estimated for the

Overall Students (Model 1), for the Best Performing Students (Model 2), and for the Worst

Performing Students (Model 3)

Covariate Model 1 Model 2 Model 3

Intercept 180.514** 225.749** 170.593**

Treatment 0.797 �0.419 0.635

School motivations �0.301 1.235 �1.790y

Parents’ ESCS index �0.151 3.248* �2.071*

Quality of class relations �0.610 1.968 1.720

External support for student autonomy 2.618 3.557 0.402

Well-being at school 0.034 �1.689 0.463

Discomfort at school �9.733** �5.615** �3.780**

Bullying acted �7.855y �5.596 �3.594

Bullying right away 1.400 2.859 0.119

Female �4.081* �0.165 �3.792*

Italian nationality of the father 13.225** 3.087 7.573**

Employment status of the father 2.235** 1.111y 0.132

Missing indicator for parents’ ESCS index 5.291** 1.810 1.855

Missing indicator for gender �4.407 7.715 �9.573

Missing indicator for father’s nationality 9.313 �5.207 11.176y

Missing indicator for father’s employment 13.247** 7.158* 4.098

Missing indicator for mother’s employment 6.744 �2.261 8.475

Covariate Model 1 Model 2 Model 3

Intercept 82.918** 83.649** 81.472**

Treatment �0.426 �0.614 0.105

Parents’ ESCS index 2.135* 1.208 4.973*

Female �8.154** �8.448** �8.113**

Italian nationality of the father 0.235 1.245 �4.001

Employment status of the father 1.322** 0.914** 2.749**

Employment status of the mother 0.991* 1.186* 0.475

Missing indicator for parents’ ESCS index 0.944 0.422 2.812

Missing indicator for gender 5.765 2.434 13.993

Missing indicator for father’s nationality �12.681* �15.429y �10.424

Missing indicator for father’s employment 6.402** 5.061* 11.359*

Missing indicator for mother’s employment 0.677 12.518 �20.520

Italian score at the 5th grade �0.401** �0.402y �0.401y

Note. ESCS = index of economic, social and cultural status.
ySignificant at 10%. *Significant at 5%. **Significant at 1%.
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TABLE 9.

Estimates of the Regression Parameters of the Difference-in-Difference Models for

Mathematics Scores, as in Equation 13 (top panel) and Equation 14 (bottom panel),

Estimated for the Overall Students (Model 1), for the Best Performing Students (Model 2),

and the Worst Performing Students (Model 3)

Covariate Model 1 Model 2 Model 3

Intercept 190.214** 234.950** 176.686**

Treatment �1.546 �2.145 �0.091

School motivations �1.858 1.301 �2.400*

Parents’ ESCS index 1.511 1.301 0.617

Quality of class relations 0.176 0.383 0.355

External support for student autonomy �1.635 �4.166y �0.434

Well-being at school 4.990* 0.801 3.602*

Discomfort at school �12.362** �4.625** �4.147**

Bullying acted �2.585 3.334 0.267

Bullying right away �0.902 1.462 �3.040

Female 7.052** 6.789** 1.580

Italian nationality of the father 10.003** 0.735 5.087*

Employment status of the father 1.485* 1.410* 0.243

Employment status of the mother 1.742* 0.784 0.458

Missing indicator for parents’ ESCS index 6.526** 2.311 0.761

Missing indicator for gender 28.446* �38.052 2.659

Missing indicator for father’s nationality 1.412 �6.096 9.082

Missing indicator for father’s employment 6.014y 3.969 0.978

Missing indicator for mother’s employment �10.701 47.940y 2.048

Covariate Model 1 Model 2 Model 3

Intercept 64.766** 67.157** 57.070*

Treatment 3.217* 2.542 5.437y

Parents’ ESCS index 0.087 �0.636 1.960

Female �0.789 �1.375 0.656

Italian nationality of the father 3.383 5.164* �2.267

Employment status of the father 1.244* 1.094y 1.338

Employment status of the mother 1.049* 0.764 1.802*

Missing indicator for parents’ ESCS index 2.619y 1.983 5.042

Missing indicator for gender 8.896 9.831 �4.698

Missing indicator for father’s nationality �12.275y �8.880** �19.789

Missing indicator for father’s employment 8.671** 8.927 6.203

Missing indicator for mother’s employment �6.969 �9.306 8.449

Mathematics score at the 5th grade �0.342** �0.354** �0.296**

Note. ESCS = index of economic, social and cultural status.
ySignificant at 10%. *Significant at 5%. **Significant at 1%.
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males and the family background is important to determine the student’s

performance: The estimated partial regression coefficients of the parents’ ESCS

index are positive and significant for Models 1 and 3 and for all the three

models, respectively; see the caption of the tables for a description of each

model. The programs to improve NCSs are effective only to improving score

in Mathematics for Models 1 and 3. The coefficient related to the previous

achievement is negative contrary to what is expected for Italian scores under

Models 1 and 2 and for Mathematics scores under all the three models.

For the double robust DiD estimator proposed by Sant’Anna and Zhao (2020),

the results are reported in Section 3.2 of the SI file (see Table 12). As for the other

DiD models, also with this estimator, the treatment is not significant for Italian,

while it is significant for Mathematics under Models 1 and 2.

7. Conclusions

We propose a CLT model to estimate a treatment effect when observations are

collected at two time occasions, before and after the treatment. The model may

be cast in the class of latent (hidden) Markov models and may be seen as an

alternative to the DiD method when multivariate outcomes are of interest and

heterogeneous causal effects may be associated with different subpopulations not

directly observable.

In more detail, the main issues of the proposed approach are the following:

(a) It allows us to detect unobserved heterogeneity, account for the potential endo-

geneity of latent abilities (Hansen et al., 2003), and discover latent clusters,

whose number is not a priori known. The causal effect is measured for each pair

of subgroups, and in this way, it is possible to verify if the treatment has different

impacts.

(b) The CLT approach is formulated as a multivariate nonlinear model allowing the

estimation of different causal effects by looking at the joint variability of the

responses over time; the probability distribution of the potential latent variables

given the treatment and the pretreatment covariates is invariant with respect to

transformations of these variables.

(c) Rather than comparing multiple static models, the CLT approach analyzes the

initial conditions by estimating the initial probabilities and sequential stage

developments by estimating the transition probabilities.

(d) In the CLT model, the outcomes are only dependent on latent POs, which are

influenced by the observed pre- and post-treatment covariates. Differently from

factor analysis, they are assumed to follow a Markov process and, in this way, the

identification problems and indeterminacy of scores that typically arise in the

factor model are avoided.

Note that within the proposed approach, the number of causal estimands

varies with the selected number of latent states, while in more traditional causal

approaches, the number of estimands is fixed. In this regard, selecting the number
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of states is a crucial point and, apart from criteria based on the observed data (see,

for instance, Figure 1 of the SI), this selection can be driven by the reasons of

interpretability depending on the specific application.

The proposal is illustrated by an extensive simulation study and an application

to assess the educational programs aimed to improve NCSs on pupils. This effect

is evaluated by considering the pupil’s CSs measured through standardized

national tests in Italian and Mathematics administered in the fifth and eighth

grades. We infer a positive effect of the treatment on the subgroup of pupils

having higher cognitive abilities. The results have been validated through suit-

able sensitivity analyses.

Apart from the present application, the proposal is tailored to analyze data

with multiple outcomes deriving from many other observational studies, where it

is important to verify differential results of the effects of the treatment on hetero-

geneous populations. We notice that even if the assumptions of the current CLT

model are formulated for two time periods, these may be simply generalized to

the case of more time occasions, and our proposal can be valuable with panel data

as well. Another possible extension would be to account for more levels in the

data structure, such as to capture the school or the class effects, and therefore, a

multilevel model would result. The CLT may be formulated similarly to the

model proposed in Bartolucci et al. (2011), where an additional discrete latent

variable is considered to capture the cluster effect. Further extensions can be

conceived using a probit link function and assuming an underlying continuous

latent variable. However, a probit parameterization instead of the proposed logit

formulation would imply a slightly more complex estimation procedure.
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