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1. Structural Model with Qualitative Variables

The structural model for the study of causal relationship among latent
variables is composed of one structural and two measurement equations:

H=HB+=[+E=EI(I-B) 1 +E(I-B)1; Y=HA,+U; X=ZA+U (1)

“where Y'=(y"(1)..-.y 1)) (ny.1), X'=("(1),. %" () (nxt) are 'the observed mixed

variables; E'=(&'p,..., &' () (nst), H'=(n ’(1),...,n’(t))(nq,t) are the latent

variables; E'=(€(1)..... ') (ns,t) are the errors in equations; 4'=(5"),...,6'w)

(nst), U'=(u'(1),... 4 ‘(1) (nyt), are the errors in variables. It is assumed that: all’
the random variables have zero mean and finite variance, B is a low matrix with

zero on the main diagonal, (7, X, H) are identically distributed and (5 E, 4, U)

are identically and independently distributed. The model is usually proposed

with restrictions on parameters and on covariances.

The solutions are reached starting from the variance covariance matrix of the

reduced model where the variables H in the measurement models are

substituted by the value of (EI7-B)-+(I-B)-/E) obtained from the structural
equations. |
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2. Methods for Obtaining Solutions

First of all given that a continuous bivariate normal variable (J;, J;) with
distribution 4)( i, p(,# 3 )) underlies every pair of ordinal bivariate
1o

observed variables (J;,J,,), the polychoric correlation between the two
components of them is calculated. When there is one only ordinal variable, the
polyserial correlation coefficient between an observed quantitative variable and
the normal underlying variable is defined. The observed frequencies of the

qualitative variables m (@q=1..n;r=1..n) given, the polychoric

coefficients are reached in different ways. Jéreskog (1994) hypothesizes that the
marginal probability of the normal veriables are equal to the marginal
frequencies of the two-way table (7, ,=n,,) (7, . ="f~w) of the ordinal

variables. Therefore, first of all, he reaches the thresholds, using the margiral
distributions of the normal bivariate distribution; for given thresholds using
such distribution, he obtains the correlation coefficient maximizing the log
likelihood of the sample respect to p( Lee et al. (1990) estimate tne

i dm)
thresholds by means of Partition Maximum Likelihood (PML) which is simpler
from the computational point of view.

Lee et al. (1995) estimate simultaneously the correlation coefficients and the
thresholds concerning pairs of variables maximizing the log likelinood of the

sample respect to ’D\i,'.f,'n) and respect to every threshold Judis by means of

PML (but Joreskog (1994) observes that “different estimates of thresholds for
one variable may be obtained from different pairs of variables”).

By means of Full Maximum Likelihood, in one case Lee et al. (1992)
simultaneously reach all the thresholds of the polychoric correlations; in
another case (Lee et al. (1990)), they reach also the parameters, the vanances
and the covariances of the latent variables. Moreover these two last methods
take up too much computer time (Lee et al. (1990) Lee et al. (1999)).

In the first three methods, the parameters and the covariances of the latent
variables and errors are obtained from the polychoric or polyserial correlations.
There is not a unique understanding about the method of obtaining the
parameters and the latent variables. Joreskog (1990), (1994), Rigdon and
Ferguson (1991) propose the Weighted Least Squares method and criticise the
Maximum Likelihood method because the standard error parameter estimates
are asymptotically incorrect, but Lee et al. (1995) continue to prefer the General
Least Squares method and criticize the proposal of Joreskog because it requires
sample sizes larger than 200 and more computer time.



3, Some Critical Observations

Comparing, 1n SOMe Montecarlo studies, different correlatnn coefficients when
the underlying bivariate distribution 18 normal, the poly* oric correlation is
shown t0 be “the best in the sense of peing closest 10 the true correlation”
(Quiroga (1992)) [event ifina Montecarlo study Babakus et al.  1987) show that
he polychoric coefficient provides the best estimates of mode ; 2rameters and
the worst fit statistics]. However, Muthen (1934), Aish and Joreskog (1990) and
Quiroga (1 992) say also that “he assumption of underlying bivanzte normality
is too strong for most ordinary yaniables used in social sciences’. There are not
many studies on {he use of poXychor’xc coefficient with underlying not normal
distribution. Lee and Lam (1988) study the robustness of po\ychor'\c coefficient

only when {he underlylng distribution 13 elliptical (containing multivariate
pormal, p\at'\cemric and leptocemr'\c distributions)- Lee et al (1995) even
{hough obtaining quite satisfactory results about such robustness with moderate
size random samples, sy that “to draw 2 ron definite conclusion, a 1onger
simulation 18 needed”. Moreover 11 literzture only Quiroga (1992) tries, in @
systematic way, 10 extend the distributive hypothesis of thz cONinUOUS
variables underlying the qualitative varables. First of all, she savs that when
you leave the normality assumptions, cuch veriables ar€ surely not consistent
and slightly biased (Quiroge (1992))- Moreover, 1n 8 Montecaslo study she
verifies that, when the underlying distribution is a skew-normal pivariate, the
po\ychoric coefficient is {he best choice only for sample size of 200-400 and
Jarge number of categories (5-9) and underestimates the true correlation
coefficient. Then, by means of a measure of not normality, she verifies that
when the underlying distributions  are generated by the Fleishman-Vale-

Maurelli po\ynomxa\ transformation (with departure from normality due to

the true correlation. Finally she proposes 2t extended polychoric coefficient
with distribution given by 2 mixture of 2 normal and univariate skew-normal
density function but she does not give empirical yerifications. Therefore, until
now, there arc neither theoretical demonstrations 1O empirical simulations
- which give satisfactory and genera\\y valid reasons for using polychoric
coefficient with underlying not ormal distribution:
Moreover the solutions based On polychoric coefficients: are not sensible 10
different scale of qualitatiﬁ'e variables becaus® they generally deal only with
ordinal yariables, reach solutions from yariance covar'xance-cowariance matnx
of the reduced model different from fhe solutions obtained from the observed
variables of the original measurement models and have the same problems of
non identification of parameters and indeterminacy of latent variables of

structural models with quantitat'we variables (V ttadini 1989)-
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4. An Alternative Proposal |

In the quantitative case the problems of not uniqueness of the solutions are
resolved by using linear combinations instead of causal latent variables of the
observed variables (Wold (1982), Haagen and Vittadini (1991)). In this paper
we propose to obtain the latent variables of the model as linear combinations of
the observed mixed variables simultaneously quantified, by means of methods
of multidimensional scaling using simultaneously optimal scaling and ordinary
least squares method. In fact such methods resolve the problem of not normality
of the variables because are distribution free (Young (1981)) and give unique
solutions once chosen the method of multidimensional scaling. In order to avoid
subjective choices about methodologies of multidimensional scaling (and
therefore subjective solutions), we propose: to quantify the qualitative variable
and to obtain the linear combinations of them by means of a unique odjective
function; to reach flexible solutions as regards to different kinds of linear
combinations requested by the problems; to take into account the different scale
of the qualitative variable. Therefore, among the variety of multidimensional
scale methods we choose the family of Alsos method (Young (1981), and
Keller and Wansbeek (1983)). These methods are based on alternating optimal
scaling which quantifies qualitative variables and ordinary least squares which
reach linear combinations of them in a iterative way. So they obtain solutions in
a different way along the scale of the vanables (ordinal-nominal, continuous-
discrete), and the aim of analysis (e.g. Principal components, canonical
correlation) giving answers to previous problems. Among the family of Alsos
methods we avoid methods such as OSMOD (Saito and Otsu (1988)) or
INDOMIX-CAMIX (Kiers (1991)) which obtain solutions in two stages.
Instead we choose methods that simultaneously obtain quantifications of
qualitative variables and their linear combinations (ADDALS (De Leeuw,
Young, Takane (1976)) MORALS CORALS (Young, De Leeuw Takane,
(1976)), PRINCALS ( De Leeuw and Van Rijckevorsel (1980)) OVERALS
(Van Der Burg and De Leeuw (1988)) respectively from the perspective of
variance analysis, canonical correlation, principal components, multiple
correspondence analysis. Moreover in order to obtain the latent variables from
their real indicators as in Wold (1982), we apply the chosen Alsos methods to
the subsets of mixed variables ¥, X;s characterized by submatrices l."( 54) [

! .\'(5,')

with coefficients all different from zero. So we simultaneously obtain the
quantification Y;,X; of such mixed variables Y, X, and their linear

transformations 7 5,25 according to different aim of the analysis (e.g. canonical

correlation, principal analysis etc.). Then in order to take into account the
restrictions:
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cov(r;p, 77,) = 0;cov(§,,§,) = b‘,'cov(5k,5p’),' cov(ua,u‘,’) =0, .

Bps) =07 (59) =0i bypia) = 0ibegsiy =0 @

we obtain by means of the Restricted Regression Componént Decomposition

(RRCD) of quantified variables Y*, X" (Haagen and Vittadini (1998)) by means
of an iterative process: '

77; = ~'f1..u'y.7773 (77; = Qﬁ. ﬁ/’ (ﬂ * ”)"* My = QH{';.;:;U: ’ Yo = Q;’my“ )

£ =00y o 85 (57 Q;,’;{; (y6)%1,=0 0%, =0, %,)

-0
Hlonu‘:(i)n?

=~ _0e =T ()= 1y ___' 0
£ QH,HUE 1j (G)=1.-J-1); 5:;& Q\h"uf’uy,))yﬁ* s, Q()&’,:.':':u.r,-“)XJJl (3)

where H, 5, are the H’ without 7}, 0. O; isthe complement orthogonal to
the orthogonal projector on the space generated by 7, and the other symbols
are defined in a similar way. So we have the following RRCD of v4 .x5,.7%:

Ouroye o078, = Bip Y8, *Oopzrn, V8, Oros 150, = F2%,* Oy oz %6,

<lYor, U
o __ 0 o,
M= Fys Tpt Loy, 5+ Oys,,0% 75 4)
5. Numerical Example

The following variables are observed on a sample of 150 families casually
chosen from 4103 american families that have been codified in the Federal
Reserve Board research regarding National Income and Wealth of 1983.

Y, Job contract household (y,,), spouse (y,); Occupation kind household (y,3),
spouse (y,q); Occupation sector household (y,,), spouse (). Y, Total health
(y,,); Income (¥;); Debt (y). X, Age household (x,), spouse (x12); Sex
household (x,,), spouse (x,4); Number of children (x,); Race (x,q); Residence
region (x,,); Civil Status (x,0); X, Educational Level household (x,,), spouse
(x,,); Full time job years household (x,5), spouse (X,,) ; Part time job years
household (x,s), spouse (X,); Latent variables: labour force (1),); Health. and
income (1),), Civil status (§,), Instruction grade (£,). ,

In order to verify the causal dependence of the latent variables H from the latent
variables & we use the alternative proposal shown in paragraph 4 with the

“ otions: L =0, =0, =0, =0, cov(4,4)=0
following restnctxgns o™ O 0™ O™ oy (A Az) ,

cov(U,,U,) =0 .The qualitative variables are quantified and the latent variables
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are obtained as principal components with Princals n_1ethod; the restrictions are

’

then taken into account by means of RRCD. The variance-covariance of the
observed variables and the results are shown in table 1.

Table 1: The alternative proposal for the sample of American families. .

|
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With the example we can

properties 0
indicated in this paragraph. Bu

verify that the alternative proposal respects all the
f the structural model described in paragraph 1 and the restrictions
t the alternative proposal obtains unique
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solutions solving all the problems of non-identification of parameters and

indeterminacy of latent variables of the structural models with qualitative
variables.
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