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ABSTRACT

A crucial problem in the Lisrel model remains that of finding necessary and
sufficient conditions for the identification of the parameters. But even if the
parameters in a particular model are identifiable, there remains an indeterminacy of
the scores of the latent variables. To avoid this problem an alternative approach to
the Lisrel model is here proposed, one that is based on a ¢zcomposition of the
datamatrix in such a way that the assumptions in the Lisrel model are satisfied.

1. INTRODUCTION

It is well known that there are no necessary and sufficient conditions for
identification of the parameters in structural equation models with latent variables
as in the Lisrel model. In this case the estimation of the parameters makes no sense,
since the identification of parameters and their estimation are dual aspects of the
same problem. Even for particular cases in which the parameters are identified there
remains an indeterminacy problem if one is interested in the estimation of the scores
of the latent variables. (Elffers, Bethlehem and Gill, 1978, Haagen, 19871990,
Schénemann and Haagen, 1987, Viuadini, 1988,1989). As Elffers et.al.(1978)
observed for the case of the factor model, the solution of the indeterminacy problem
is essential to attach a real meaning to the mathematically possible factors. The
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same problem arises in the Lisrel mode! with unknown latent variables. To avoid '

this arbitrariness in interpreting the latent variables in the Lisrel model. the data
matrix is decomposed in components that have the properties of the variables in the
Lisrel model. For the factor model Schonemann and Steiger (1976) proposed a
decomposition of the datamatrix in two components: the common factors are
defined as linear combinations of the observable variables and the factor loadings
as the regression coefficients, regressing the observed variables on the s0 defined
common factors (regression components). In our case. however. the problem is
more complex. Writing the Lisrel model in the form of a common factor model. the
factorloading matrix has quite different structure than those in the common factor
model. The scores of the latent factors are defined as regression components with
the same structure as the latent variables in the Lisrel model.

2. THE LISREL MODEL

The Lisrel model is composed of one structural and two measurement
equations

nU): B‘nuy+ r‘::uy+ Eu')

«\‘U):A)' nu)+6\n (1)
Xn= Ay’ St Vi r=1.....T

where the vectors T.Z.v,andx have m, k. q and p components. with p>k. g>m.
T>p+q.

Itis assumed that all the random variables have zero medn and finite varince. B is
a triangular matrix with zero on the main diagonal. and

Gy Va0, 8L ¢=1...T are
identically and independently distributed
(. AE) and = are independent
(V',A) and E are independent

Vv and A are independent

where -
E' =(€p .- &) V= (Ve Vi) A =8, 0 = =G5

In order to show the relatinship between the Lisrel model and the commaon
factor model we write (1) in the form

T=A R+T (2)

with
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A ) )

(A Al _(ABY'T A -8
A‘“_[A. AJ"[ A 0 ©

24 2 14 x

where A,,, is the regression coefficient matrix, regressing z on .

For the variance-covariance matrix we have

L,=A L A +Z 4)
where
0
w0 z,) G0 (3)

3. THE INDETERMINACY OF THE FACTOR SCORES

The i;de(erminacy of the scores of the latent variables is based on the .
following well known lemma (Kano, 1984).

Lemma

Assume that the random vector z satisfies (4): then there exists a random vector w
such that ) ’

p=A‘v Dliew,  Z_=0

&

and

I,.=%,~A" %A (6)

E1 £ A 310

A’ X!z, which is usually used as an “estimator” for the latent factors (Haagen,
1986), is called the regression part and w the arbitrary part of z. Kano (1984) calls
the covariance matrix of w arbitrariness. The arbitrariness cannot be eliminated for
a finite number of variableés (Kano. 1984: Haagen, 1990). consequently this can
make the prediction of the latent factors meaningless (Schénemann and Haagen,
1987). Williams (1978) proposed a redefinition of the common factor model, in
which the limit of the sequence of arbitrariness vanishes for infinite observational
variables. However, in the empirical research, where only a limited number of
variables is possible, the arbitrariness remains a crucial problem in interpreting the
latent factors.

Therefore, we propose a less ambiguous method to analize data structures,
decomposing the observable data matrix into components which have analogous
properties such as the latent variables in the Lisrel model, but we do not claim that
they must be "causal” factors like those in the Lisrel model.
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4. DECOMPOSITION OF THE DATA MATRIX
Let

H' =Mgp--Na)s X=Xy coXg)s Y=g Xa)

we have for (1)

H=HB+Zlr+E @)
Y=HA +A (8)
X =ZA,+V &)

We assume now that X,Y.E.Z.V and A are mean centered data matrices,
where only X and Y are observed. Given X and Y, we construct components
H.=.AandV and coefficients B.T. A, and A, such that the these components have

analogous properties like the variables in the Lisrel model.

Let S(Z) be the vector space generated by the columns of Z.

is the orthorgonal projectoron  S(=)

Q:=1-P:

is the projector on the orthorgonal complement and
Pyz=0:X(X'Q:X)'X"Qz (10)

is the orthogonal projector on the space generated by those columns of X. which are
elements of the orthogonal complement of the space spanned by the columns of =.

Let Pz y be the orthogonal projector onto the linear sum of S(Z) and $(X)
than we obtain (Rao & Yanai, 1979)
Pyz=P:+Py:
With this notation we have the following decomposition:
S(Z.X.E,Y)=5(2)®S5(Q2:X)® S(Q:xE)® S(Qz0xue¥ ) (D
for Z = (Y,X) we have

Z=PZ +PyeZ + PezoxZ * Przoxuels - a2
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To distinguish the components which result from the decomposition of the
parameters and the variables in the stochastic model we use the symbol " ~ .

Using A 4y to indicate the regression pattern, regressing Y on X, we can rewrite
(13)

equation (12) in the form

Z =::.-AEZ+E*A-5.2-+(Av‘7)
(14)

where
E* = QEVXE‘ Z*= QEUXZ

With
A-E]z(AS%A-E.\') and AE'Z‘=A.E'Z=("§C') 0)

(note that 0z ,xX =0)
(16)

we obtain
(Y. X)=E(Azy As) + E*(A ., )+ (AV)

5. DETERMINATION OF THE WEIGHTS AND THE FACTOR SCORES

First we calculate the component matrix Z. From (11) 2ad (15). it follows that
(17

we must find a basis of the subspace S(Z) such that

PEZ =.:.(A E)"A.:..\')
We therefore define Z as a linear combination of the columns of Z
where the covariance matrix L2z = LZ,,L " is positive definite and Z is

==zL
decomposed by
Z=2A"y,+(Z-ZA"y) (18)
where
A- ‘EZ = Z‘_EIEZE/ = Z-:ELZ//
Ao Tphs, = TLE, L5 = Eee
VA, (19)

We have
-1
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and therefore

130

=Z5A (A 5 EA 51)‘1 (20)

The decomposition of Z given in (18) is called Regression Component
Decomposition (RCD) (Schénemann and Steiger. 1976). In the case of the common
“factor model where we must estimate the factor loadings and the common factor
scores, given a data matrix Z. Schonemann and Steiger propose the decomposition
(18) as-an alternative to the estimation of the factor loadings and the factor scores
in order to eliminate the indeterminacy of the common factor scores. The
components thus defined have the same properties (except the full rank condition of
the covariance matrix of the specific factors) as the factors in the common factor
model.

From (18-20) it follows that we can take the factor loading matrix. determined
by a factor extraction method. in order to get L and =. Given =. X and Y we obtain

As = (EENEX) = Ax N
and

Ay =(EE) Ey)y=Tu-8A, (22)
From (12, (13) we have that V' is given by

V2 PyaZ =027 = QX (X QN TN 02 (23

To get E* we note that the columns E* mus: be orthogonal to the columns of
Z.dand V.

From (12). defining

Z¥% =7 -PZ-Py:Z 24

we have
Zxx = EX(EXE*EXZ+Pyp yoz (25)
where E*x=Q, .E

Applying RCD on the Z** we get the linear combination
Ex=2Z%*L",.., with

-, _ - -1 -, _
Ly = (A gugeeZieuzmBApezes) A pozerlyeezer (26)
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Up to now we have calculated 2,42, A=, V,E*,A,.,.. (note that A gupee =Af.y).
From the orthogonality of the columns of E* and X we have
Apy =0 (27)

Finally we calculate A. using

A=Pyzi i (28)
From

Ay, =TU-B)'A, (29

Apy=(1=BY'A, (30)
we have

A, =TA"., (30
or

F=A " (ApgA ) (32)

A=A, (33)
From

H=HB+ZT+E
we obtain

(I -BYH'H(I-B)=(TZ+E)ET+E£)=:S (34)
Let H'H=1

then we obtaint (/ — B) by a Colesky Factorisation of S.
From (30) we therefore have

A =(-B)A., (35)

y
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6. THE EQUIVALENCE TO THE LISREL MODEL

From the above derivation it follows that the given decomposition leads to
components, that is to “latent variables” which have the same properties postulated
by the assumptions in the stochastic Lisrel model.

But there is a main difference: the indeterminacy problem in the Lisrel model is due
to the fact that the partial covariance matrix Z,, does not vanish. For the proposed
decomposition. however, we have the following result:

AN Z7A(E D=0 ’ (36)

[lll
[t
[tk

=

7. SUMMARY

Because of the arbitrariness of the scores of the latent variables in the Lisrel
model. the commonly used least squares “estimation” of these scores is not vahid.
This "estimation” implies a definition of the latent variables. In other words. the
definition of the undetermined latent variables depends on the estimation criteria.

To resolve the indeterminacy of the latent scores. a decomposition of the
observed variables according to the particular structure between the observed and
the latent variables is proposed, where these “lateat” variables (components) are
defined as linear combinations of the the obsened variables. The ditference
between these components and the latent variables in the Lisrel model is analogous
to the difference between the principal componenis in a component analysis and the
common factors in the factor analysis model.
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